英文flag致电:029-68064558
搜索

钙离子荧光探针OregonGreen488 BAPTA1,AM

英文名称:OG488 BAPTA-1, AM [equivalent to Oregon Green® 488 BAPTA-1, AM] *Cell permeant*
产品参数
Ex (nm)493Em (nm)522
分子量1258.07溶剂DMSO
存储条件在零下15度以下保存, 避免光照
产品概述

OG488 BAPTA -1 AM 与 Oregon Green 488 BAPTA-1 AM 酯分子相同。它是一种细胞渗透性、可见光激发的钙指示剂,通常与 FITC 滤光片组一起使用。通过将溶解的指示剂直接添加到含有培养细胞的培养皿中,可以向细胞装载 OG488 BAPTA -1 AM。来自这些细胞的荧光信号通常使用荧光显微镜、荧光微孔板测定或流式细胞术来测量。

点击查看光谱

 

适用仪器


荧光显微镜  
Ex: FITC 滤波片组
Em: FITC 滤波片组
推荐孔板: 黑色透明底板

 


流式细胞仪  
Ex: 488
Em: 530/30nm
通道: FITC

 


荧光酶标仪  
Ex: 490 nm
Em: 525 nm
Cutoff: 515 nm
推荐孔板: 黑色透明底板
读取模式: 底读模式/可分液处理

 

溶解方案(溶剂以说明书为准)

  0.1 mg 0.5 mg 1 mg 5 mg 10 mg
1 mM 79.487 µL 397.434 µL 794.868 µL 3.974 mL 7.949 mL
5 mM 15.897 µL 79.487 µL 158.974 µL 794.868 µL 1.59 mL
10 mM 7.949 µL 39.743 µL 79.487 µL 397.434 µL 794.868 µL
实验方案

样品实验方案

储备溶液配制:

除非另有说明,所有未使用的储备溶液应分成一次性等份,并在制备后储存在-20°C。避免反复冻融循环。

OG488 BAPTA-1 AM

在高质量无水 DMSO 中制备 2 至 5 mM OG488 BAPTA-1 AM 储备溶液。

工作溶液配制:

OG488 BAPTA-1 AM 工作溶液

1.实验当天,将 OG488 BAPTA-1 AM 溶解在 DMSO 中,或将等份指示剂储备溶液解冻至室温。

2.在您选择的缓冲液(例如 Hanks 和 Hepes 缓冲液)中用 0.04% Pluronic® F-127 制备 2 至 20 µM OG488 BAPTA-1 AM 工作溶液。对于大多数细胞系,建议终浓度为 4-5 μM 的 Cal Green  1 AM。细胞加载所需染料的准确浓度必须根据经验确定。

注意:非离子洗涤剂 Pluronic® F-127 有时用于增加 Cal Green™ 1 AM 的水溶性。可以从百萤购买各种 Pluronic® F-127

注意:如果您的细胞含有有机阴离子转运蛋白,可将丙磺舒 (1-2 mM) 添加到染料工作溶液中(孔中的最终浓度为 0.5-1 mM),以减少脱酯后染料的外漏。各种 ReadiUse 丙磺舒产品,包括水溶性、钠盐和稳定溶液,均可从百萤购买。

 

操作步骤

以下是我们推荐的将 AM 酯加载到活细胞中的方案。该方案仅提供指导,实际应根据您的具体需求进行修改。

1.在生长培养基中将细胞孵育过夜。

2.第二天,将 1X OG488 BAPTA-1 AM 工作溶液添加到您的细胞培养板中。

3.将载有染料的板在细胞培养箱中于 37°C 下孵育 30 至 60 分钟。

注意:孵育染料超过 1 小时可以提高某些细胞系的信号强度。

4.用 HHBS 或您选择的缓冲液(包含阴离子转运蛋白抑制剂,例如 1 mM 丙磺舒,如果适用)替换染料工作溶液,以去除任何多余的探针。

5.根据需要添加刺激剂,同时使用配备 FITC 滤光片组的荧光显微镜或包含可编程液体处理系统(例如 FDSS、FLIPR 或 FlexStation)的荧光酶标仪在 Ex/Em = 490/525 nm 处测量荧光。

 

试剂应用文献

Protocol for in vitro sonoporation validation using non-targeted microbubbles for human studies of ultrasound-mediated gene delivery
Authors: Zhang, Nisi and Guo, Yutong and Foiret, Josquin and Tumbale, Spencer K and Paulmurugan, Ramasamy and Ferrara, Katherine W
Journal: STAR protocols (2023): 102723
 
Network pharmacology-based research uncovers cold resistance and thermogenesis mechanism of Cinnamomum cassia
Authors: Jiang, Xiao-wen and Lu, Hong-yuan and Xu, Zi-Hua and Zhang, Ying-Shi and Zhao, Qing-Chun and others,
Journal: Fitoterapia (2021): 104824
 
Binding to carboxypeptidase M mediates protective effects of fibrinopeptide Bβ (15-42)
Authors: Sörensen-Zender, Inga and Chen, Rongjun and Song, Rong and David, Sascha and Melk, Anette and Haller, Hermann and Schmitt, Rol and , undefined
Journal: Translational Research (2019)
 
Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores
Authors: Jia, Shang and Ramos-Torres, Karla M and Kolemen, Safacan and Ackerman, Cheri M and Chang, Christopher J
Journal: (2017)
 
Tuning the color palette of fluorescent copper sensors through systematic heteroatom substitution at rhodol cores
Authors: Jia, Shang and Ramos-Torres, Karla M and Kolemen, Safacan and Ackerman, Cheri M and Chang, Christopher J
Journal: ACS chemical biology (2017): 1844--1852

 

参考文献

Microscopic imaging of intracellular calcium in live cells using lifetime-based ratiometric measurements of Oregon Green BAPTA-1
Authors: Lattarulo C, Thyssen D, Kuchibholta KV, Hyman BT, Bacskaiq BJ.
Journal: Methods Mol Biol (2011): 377
 
Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator
Authors: Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, Tsien RW, Tsien RY.
Journal: Nat Chem Biol (2007): 423
 
An ensemble and single-molecule fluorescence spectroscopy investigation of Calcium Green 1, a calcium-ion sensor
Authors: Lu Y, Paige MF.
Journal: J Fluoresc (2007): 739
 
Measurement of intracellular calcium levels by the fluorescent Ca2+ indicator Calcium-Green
Authors: Silei V, Fabrizi C, Venturini G, Tagliavini F, Salmona M, Bugiani O, Lauro GM.
Journal: Brain Res Brain Res Protoc (2000): 132
 
Monitoring of Ca2+ release from intracellular stores in permeabilized rat parotid acinar cells using the fluorescent indicators Mag-fura-2 and calcium green C18
Authors: Tojyo Y, Tanimura A, Matsumoto Y.
Journal: Biochem Biophys Res Commun (1997): 189
 
Optical imaging of neuronal activity in tissue labeled by retrograde transport of Calcium Green Dextran
Authors: McPherson DR, McClellan AD, O'Donovan MJ.
Journal: Brain Res Brain Res Protoc (1997): 157
 
Modulation of an Intracellular Calmodulin-Stimulated Ca2+-Pumping ATPase in Cauliflower by Trypsin (The Use of Calcium Green-5N to Measure Ca2+ Transport in Membrane Vesicles)
Authors: Askerlund P., undefined
Journal: Plant Physiol (1996): 913
 
A method for recording intracellular [Ca2+] transients in cardiac myocytes using calcium green-2
Authors: Spencer CI, Berlin JR.
Journal: Pflugers Arch (1995): 579
 
Characterization of calcium translocation across the plasma membrane of primary osteoblasts using a lipophilic calcium-sensitive fluorescent dye, calcium green C18
Authors: Lloyd QP, Kuhn MA, Gay CV.
Journal: J Biol Chem (1995): 22445
 
Calcium green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons
Authors: Rajdev S, Reynolds IJ.
Journal: Neurosci Lett (1993): 149