COVID-19肽底物Covidyte IF670
Ex (nm) | 656 | Em (nm) | 670 |
分子量 | 3067.69 | 溶剂 | DMSO |
存储条件 | 在零下15度以下保存, 避免光照 |
冠状病毒(CoV)是一种可以感染人类和多种动物,因其形态看上去像中世纪欧洲帝的皇冠,因此命名为“冠状病毒”。这类病毒具有胃肠道、呼吸道和神经系统的嗜性,可以导致多种疾病。在2019年底,一种新型的冠状病毒被称为严重急性呼吸系统综合症冠状病毒2(SARS-CoV-2),开始在全球蔓延。即使大多数受感染的患者仅患有轻度症状,例如发烧和咳嗽,但该疾病可能发展为致命的肺炎和急性呼吸衰竭病例,尤其是在多病体弱的的老人中。该病毒仅仅从出现开始的三四个月,全球已经感染了超过100万人。当前,尚无用于Covid-19的任何具体有效的选择。目前,Covid-19的临床主要是对症,并结合上市的抗病毒(如瑞德昔韦和)以继发感染。目前全都迫切需要开发抗SARS-CoV-2的特异性抗病毒方法和疫苗,而冠状病毒主蛋白酶是抗CoV设计的重要靶点,在病毒基因表达和复制中起着关键作用。目前已掌握的人类免疫缺陷病毒(HIV)和丙型肝炎的成功策略是抑制蛋白水解酶消灭病毒蛋白酶。而且证明了蛋白酶抑制剂病毒感染具有非常大的潜力。同样,SARS-CoV-2病毒必须要进行复制的酶便是蛋白酶,因此Covid-19是抗病毒极好的靶点。
Covidyte TF670是一种包含11个氨基酸序列的肽底物,可被冠状病毒蛋白酶切割。FRET肽的"N"和"C"末端分别包含Dabcyl(淬灭剂)和Edans(供体),当该肽完整时,Edans的荧光可被Dabcy有效地淬灭。当该肽被冠状病毒蛋白酶水解时,Edans片段产生明显增强的荧光,因为其荧光不再被Dabcyl淬灭。冠状病毒蛋白酶的活性可以通过Edans的荧光强度有效地检测到。Covidyte TF670是筛选冠状病毒蛋白酶抑制剂的便捷工具。百萤生物是AAT Bioquest的中国代理商,为您提供优质的Covidyte肽底物系列产品。
适用仪器
荧光酶标仪 | |
Ex: | 640nm |
Em: | 680nm |
Cutoff: | 660nm |
推荐孔板: | 纯黑色孔板 |
样品实验方案
溶液配制
储备溶液配制
1.Covidyte TF670储备液(200X):向Covidyte TF670小瓶中添加25 µL(对于cat#13540)或250 µL(对于cat#13541)DMSO。
注意:制成单次使用的等分试样,并储存在-20°C下。
工作溶液配制
1.Covidyte TF670工作溶液:在20 mM Tris缓冲液(pH 7.5)或自备缓冲液中以1:200稀释底物储备液。每个实验在96孔板中使用50μL底物溶液。
2.冠状病毒蛋白酶稀释:根据需要稀释冠状病毒蛋白酶。
实验步骤
(一个96孔板的样品方案)
- 将50μLCovidyte TF670工作溶液和50μL冠状病毒蛋白酶稀释液添加到测定板的所有孔中。
- 使用荧光酶标仪在Ex / Em = 640/680 nm(截止660nm)处检测荧光的增加。
对于动力学读数:立即开始连续不断地测量荧光强度,并每5分钟记录一次数据,持续30-120分钟。
对于终点读数:在避光的条件下,将反应在所需温度下孵育30至120分钟。然后测量荧光强度。
图示
图1蛋白酶在蛋白质、细胞调节和信号转导以及氨基酸的生成中起着至关重要的作用,用于蛋白质合成或其他代谢途径。 FRET蛋白酶底物广泛用于检测蛋白酶活性,特别是用于病毒蛋白酶的检测,这些病毒蛋白酶经常需要较长的肽序列才能实现佳结合,例如冠状病毒,HIV和HCV蛋白酶。原理:内部淬灭的FRET肽底物被蛋白酶消化,荧光强度与蛋白酶活性成正比,从而产生高荧光的肽片段。Tide Quencher、Tide Fluor 和iFluor 染料都是研发用于高通量筛选应用的FRET蛋白酶底物的极其有效的淬灭剂。 |
相关产品
品牌 | 品名 | 货号 | 规格 | 描述 |
AAT | Covidyte IF670 | #13542 | 100 Tests |
1.包含可被冠状病毒蛋白酶切割的14个氨基酸序列的肽底物 2.#13542:当该肽被冠状病毒蛋白酶水解时,iFluor 670片段产生明显增强的荧光,因为其荧光不再被TQ5淬灭;#13541:当该肽被冠状病毒蛋白酶水解时,TF5片段产生明显增强的荧光,因为其荧光不再被TQ5淬灭 |
AAT | Covidyte TF670 | #13541 | 1000 Tests | |
AAT | Covidyte EN450 | #13535 | 100 Tests | |
AAT | Covidyte ED450 | #13537 | 100 Tests | 包含可被冠状病毒蛋白酶切割的11个氨基酸序列的肽底物 |
参考文献
Evaluating MERS-CoV Entry Pathways.
Authors: Qing, Enya and Hantak, Michael P and Galpalli, Gautami G and Gallagher, Tom
Journal: Methods in molecular biology (Clifton, N.J.) (2020): 9-20
In silico and in vitro analysis of small molecules and natural compounds targeting the 3CL protease of feline infectious peritonitis virus.
Authors: Theerawatanasirikul, Sirin and Kuo, Chih Jung and Phetcharat, Nanthawan and Lekcharoensuk, Porntippa
Journal: Antiviral research (2020): 104697
Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV.
Authors: Morse, Jared S and Lalonde, Tyler and Xu, Shiqing and Liu, Wenshe Ray
Journal: Chembiochem : a European journal of chemical biology (2020): 730-738
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Authors: Hoffmann, Markus and Kleine-Weber, Hannah and Schroeder, Simon and Krüger, Nadine and Herrler, Tanja and Erichsen, Sandra and Schiergens, Tobias S and Herrler, Georg and Wu, Nai-Huei and Nitsche, Andreas and Müller, Marcel A and Drosten, Christian and Pöhlmann, Stefan
Journal: Cell (2020)
Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376.
Authors: Ye, Gang and Wang, Xiaowei and Tong, Xiaohan and Shi, Yuejun and Fu, Zhen F and Peng, Guiqing
Journal: Viruses (2020)
α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment.
Authors: Zhang, Linlin and Lin, Daizong and Kusov, Yuri and Nian, Yong and Ma, Qingjun and Wang, Jiang and von Brunn, Albrecht and Leyssen, Pieter and Lanko, Kristina and Neyts, Johan and de Wilde, Adriaan and Snijder, Eric J and Liu, Hong and Hilgenfeld, Rolf
Journal: Journal of medicinal chemistry (2020)
Characterization of amino acid substitutions in feline coronavirus 3C-like protease from a cat with feline infectious peritonitis treated with a protease inhibitor.
Authors: Perera, Krishani Dinali and Rathnayake, Athri D and Liu, Hongwei and Pedersen, Niels C and Groutas, William C and Chang, Kyeong-Ok and Kim, Yunjeong
Journal: Veterinary microbiology (2019): 108398
Evaluation of a non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold as a SARS 3CL protease inhibitor.
Authors: Ohnishi, Kouji and Hattori, Yasunao and Kobayashi, Kazuya and Akaji, Kenichi
Journal: Bioorganic & medicinal chemistry (2019): 425-435
Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis.
Authors: Pedersen, Niels C and Kim, Yunjeong and Liu, Hongwei and Galasiti Kankanamalage, Anushka C and Eckstrand, Chrissy and Groutas, William C and Bannasch, Michael and Meadows, Juliana M and Chang, Kyeong-Ok
Journal: Journal of feline medicine and surgery (2018): 378-392
Protease inhibitors broadly effective against feline, ferret and mink coronaviruses.
Authors: Perera, Krishani Dinali and Galasiti Kankanamalage, Anushka C and Rathnayake, Athri D and Honeyfield, Amanda and Groutas, William and Chang, Kyeong-Ok and Kim, Yunjeong
Journal: Antiviral research (2018): 79-86